Zaawansowane wyszukiwanie
  Strona Główna » Sklep » Programy matematyczne » Metody numeryczne » Moje Konto  |  Zawartość Koszyka  |  Do Kasy   
 Wybierz kategorię
Algorytmy Wzorce UML
Bazy danych
Bezpieczeństwo
Bioinformatyka
Biznes Ekonomia Firma
Chemia
DTP Design
E-biznes
Ekonometria
Elektronika Elektrotechnika
Energetyka
Fizyka
GIS
Grafika użytkowa
Hardware
Informatyczne systemy zarządzania
Informatyka w szkole
Internet
Języki programowania
Matematyka
Multimedia
Obsługa komputera
Office
Poradniki
Programowanie gier
Programy inżynierskie
Programy matematyczne
  Mathcad Mathematica
  Matlab Labview Scilab
  Metody numeryczne
  Symulacje komputerowe
Serwery
Sieci Firewalle Protokoły
Słowniki
Systemy operacyjne
Technika
Telekomunikacja
Tworzenie stron WWW

Zobacz pełny katalog »
 Wydawnictwo:
 Difin
Prawo w wirtualnych światach

Prawo w wirtualnych światach

63.00zł
53.55zł
Metody numeryczne w Delphi 4 90.00zł 63.90zł
Metody numeryczne w Delphi 4

Autor: Bernard Baron

ISBN: 83-7197-141-9

Ilość stron: 584

Data wydania: 11/1999

W książce przedstawiono szereg najpopularniejszych algorytmów metod numerycznych oraz ich implementacje w języku Object Pascal, stanowiącym podstawę zintegrowanego środowiska programowania Delphi dla Windows95/98/NT. Każda z prezentowanych metod została dokładnie opisana i zilustrowana przykładowym programem, co umożliwia Czytelnikowi dogłębne prześledzenie zamieszczonych konstrukcji, jak również wprowadzanie własnych udoskonaleń.

Książka może być pomocna dla studentów, pracowników naukowych i programistów, którzy w codziennej praktyce stykają się z koniecznością rozwiązywania zagadnień obliczeniowych. Na dołączonej do książki dyskietce zamieszczono kody źródłowe wszystkich omawianych programów i bibliotek.

Rozdziały:

Wstęp. Definicja klas macierzowych - moduł Macierze4 (14)

Rozdział 1. Algebra macierzy i równania liniowe - moduł AlgeLin4 (19)

  • 1.1. Suma macierzy - procedura ADDMAC (21)
  • 1.2. Różnica macierzy - funkcja SubMac (21)
  • 1.3. Mnożenie macierzy przez liczbę - funkcja MulMacR (22)
  • 1.4. Iloczyn dwóch macierzy - funkcja MulMac (23)
  • 1.5. Macierz jednostkowa - funkcja MacJeden (24)
  • 1.6. Norma macierzy - funkcja NorMac (24)
  • 1.7. Funkcja macierzowa eB - funkcja ExpMac (25)
  • 1.8. Metoda bezpośredniego rozwiązywania układu równań macierzowych metodą eliminacji Gaussa -funkcja RRMAD1 (27)
  • 1.9. Skalowanie układu równań liniowych - funkcja SkalRowMac (32)
  • 1.10. Rozwiązywanie układu równań liniowych wg algorytmu Crouta - funkcja RRMAD2 (34)
  • 1.11. Obliczanie macierzy odwrotnej metodą eliminacji Gaussa - funkcja OdwMac1 (39)
  • 1.12. Obliczanie macierzy odwrotnej metodą Crouta - funkcja OdwMac2 (44)
  • 1.13. Obliczanie wyznacznika macierzy kwadratowej - funkcja DET (49)
  • 1.14. Wskaźnik uwarunkowania macierzy - funkcja WUMac (51)
  • 1.15. Obliczanie wartości własnej macierzy kwadratowej A o największym module - funkcja MWWM (52)
  • 1.16. Obliczanie wartości własnej macierzy 1-aA o największym module - funkcja MWWMA (54)
  • 1.17. Rozwiązywanie układu równań liniowych metodą iteracji Jacobiego oraz Richardsona - funkcja RRMAIRich (55)
  • 1.18. Rozwiązywanie układu równań metodą Gaussa-Seidela oraz metodą nadrelaksacji - funkcja RRMAIGS (58)
  • 1.19. Pseudorozwiązanie układu nadokreślonego - funkcja PseRoz - funkcja OdwMac3 (61)
  • 1.20. Metoda najmniejszych kwadratów - funkcja PseRozNK (67)
  • 1.21. Algorytm Crouta rozwiązywania rzadkich układów równań liniowych - klasa TRozRowMacRzadkaCrout (70)
  • 1.22. Algorytmy iteracyjne Richardsona oraz Gaussa-Seidela dla macierzy rzadkich - klasa TRozRowMacRzadkaIter (78)

Przykłady zastosowań procedur i funkcji z modułu AlgeLin4 (83)

  • Przykład 1.1. (83)
  • Przykład 1.2. (89)
  • Przykład 1.3. (89)
  • Przykład 1.4. (90)
  • Przykład 1.5. (91)
  • Przykład 1.6. (92)
  • Przykład 1.7. (93)
  • Przykład 1.8. (96)

Rozdział 2. Liczby zespolone i równania liniowe o współczynnikach zespolonych - moduły AlgeZes4, AlgMZes4 (97)

  • 2.1. Stałe i typy zmiennych dla modułu AlgeZes4 (98)
  • 2.2. Dodawanie liczb zespolonych - funkcja FAdd (99)
  • 2.3. Mnożenie liczb zespolonych - funkcja FMul (99)
  • 2.4. Odejmowanie liczb zespolonych - funkcja FSub (99)
  • 2.5. Dzielenie liczb zespolonych - funkcja FDiw (100)
  • 2.6. Iloczyn liczby zespolonej i rzeczywistej - funkcja FMulrz (101)
  • 2.7. Iloraz liczby zespolonej przez rzeczywistą - funkcja FDiwzr (101)
  • 2.8. Iloraz liczby rzeczywistej przez zespoloną - funkcja FDiwrz (102)
  • 2.9. Odwrotność liczby zespolonej - funkcja FOdw (102)
  • 2.10. Liczby sprzężone - funkcja FSprz (103)
  • 2.11. Moduł liczby zespolonej - funkcja Modul (103)
  • 2.12. Argument liczby zespolonej - funkcja Arg (103)
  • 2.13. Kwadrat modułu liczby zespolonej - funkcja KwModul (105)
  • 2.14. Macierze zespolone - klasa TMacierzZ (105)
  • 2.15. Macierz zespolona transponowana - funkcja TranMacZ (106)
  • 2.16. Suma macierzy zespolonych - funkcja AddMacZ (106)
  • 2.17. Różnica macierzy zespolonych - funkcja SubMacZ (107)
  • 2.18. Iloczyn dwóch macierzy zespolonych - funkcja MulMacZ (108)
  • 2.19. Iloczyn macierzy zespolonej przez liczbę zespoloną - funkcja MulMacZz (109)
  • 2.20. Macierz zespolona jednostkowa - funkcja MacJedenZ (109)
  • 2.21. Rozwiązywanie równania macierzowego zespolonego metodą eliminacji Gaussa - funkcja RRMaZ1 (110)
  • 2.22. Skalowanie równania macierzowego zespolonego - funkcja SkalRowMacZ (112)
  • 2.23. Obliczanie macierzy odwrotnej macierzy zespolonej według algorytmu Gaussa - funkcja OdwMacZ1 (112)
  • 2.24. Rozwiązanie równania macierzowego zespolonego metodą Crouta-Doolittle'a - funkcja RRMaZ2 (114)
  • 2.25. Obliczanie macierzy odwrotnej macierzy zespolonej metodą Crouta - funkcja OdwMacZ2 (117)
  • 2.26. Obliczanie wyznacznika macierzy zespolonej - funkcja DetZ (119)
  • 2.27. Norma macierzy zespolonej - funkcja NorMacZ (121)
  • 2.28. Wskaźnik uwarunkowania macierzy zespolonej - funkcja WUMacZ (122)
  • 2.29. Wartość własna macierzy zespolonej o największym module - funkcja MWWMZ (122)
  • 2.30. Wartość własna macierzy zespolonej 1-aA o największym module - funkcja MWWMZA (123)
  • 2.31. Rozwiązywanie równania macierzowego zespolonego metodami Gaussa-Seidela oraz nadrelaksacji - funkcja RRMAZIGS (125)
  • 2.32. Rozwiązywanie równania macierzowego zespolonego metodami iteracyjnymi Jacobiego oraz Richardsona - funkcja RRMAZIRich (127)
  • 2.33. Algorytm Crouta rozwiązywania rzadkich układów równań liniowych zespolonych - klasa TRozRowMacRzadkaZespolCrout (129)
  • 2.34. Metody iteracyjne rozwiązywania rzadkich układów równań liniowych zespolonych - klasa TRozRowMacRzadkaZespolIter (134)

Przykłady zastosowań procedur i funkcji z modułów AlgeZes4 i AlgMZes4 (140)

  • Przykład 2.1. (140)
  • Przykład 2.2. (144)
  • Przykład 2.3. (150)
  • Przykład 2.4. (150)
  • Przykład 2.5. (152)
  • Przykład 2.6. (158)

Rozdział 3. Wybrane metody poszukiwania minimum funkcji wielu zmiennych - moduł MinFun4 (162)

  • 3.1. Wyznaczenie minimum funkcji wielu zmiennych bezgradientową metodą poszukiwań prostych Hooke'a-Jeevesa jako metoda klasy TMinFunMetBezGrad - funkcja TMinFunMetBezGrad.MinFunHJ (167)
  • 3.2. Bezgradientowa metoda "złotego podziału" poszukiwania minimum w kierunku jako metoda prywatna klasy TMinFunMetBezGrad - funkcja TMinFunMetBezGrad.MinKierrzp (170)
  • 3.3. Bezgradientowa metoda Powella poszukiwania minimum funkcji wielu zmiennych jako metoda publiczna klasy TMinFunMetBezGrad - funkcja TMinFunMetBezGrad .MinFunPo (178)
  • 3.4. Wyznaczanie gradientu funkcji rzeczywistej wielu zmiennych jako metoda prywatna klasy TMinFunMetGradient -funkcja TMinFunMetGradient.GradF (182)
  • 3.5. Metoda ekspansji i kontrakcji geometrycznej z jednym testem badania współczynnika kroku przy poszukiwaniu minimum w kierunku jako metoda prywatna klasy TMinFunMetGradient - funkcja TMinFunMetGradient.MiniKier1 (184)
  • 3.6. Metoda aproksymacji parabolicznej z jednym testem badania współczynnika kroku przy poszukiwaniu minimum w kierunku jako metoda prywatna klasy TMinFunMetGradient - funkcja TMinFunMetGradient.MiniKier2 (187)
  • 3.7. Algorytm największego spadku jako metody klasy TMinFunMetGradient - funkcja TMinFunMetGradient. MinFunNajSpadku1 - funkcja TMinFunMetGradient. MinFunNajSpadku2 (191)
  • 3.8. Hesjan funkcji rzeczywistej wielu zmiennych jako metoda klasy TMinFunMetGradient - funkcja MinFunMetGradient.HesjanFun (195)
  • 3.9. Zmodyfikowany algorytm Newtona jako metody publiczne klasy TMinFunMetGradient - funkcja TMinFunMetGradient.MiniFunZmodNewton1 - funkcja TMinFunMetGradient.MiniFunZmodNewton2 (199)
  • 3.10. Metoda sympleksowa obliczania minimum liniowej funkcji wielu zmiennych z ograniczeniami liniowymi (202)

Przykłady zastosowań metod klas z modułu MinFun4 (216)

  • Przykład 3.1. (216)
  • Przykład 3.2. (219)

Rozdział 4. Równania nieliniowe, zera wielomianów, wartości własne macierzy - moduł RoNieLin4 (225)

  • 4.1. Algorytmy rozwiązywania układów równań nieliniowych jako metody klasy TRozRowNielin (226)
    • 4.1.1. Macierz Jacobiego funkcji wektorowej F(X) jako metoda prywatna klasy TRozRowNielin - funkcja TRozRowNielin.GeneracjaMacierzyJacobiego (227)
    • 4.1.2. Rozwiązywanie układów równań nieliniowych metodą Newtona jako metoda publiczna klasy TRozRowNielin - funkcja TRozRowNielin.MetodaNewtona (228)
    • 4.1.3. Rozwiązywanie układów równań nieliniowych metodą gradientową w ramach klasy TRozRowNielin - funkcja TRozRowNielin.MetodaGradientowa (230)
    • 4.1.4. Rozwiązywanie układu równań nieliniowych zmodyfikowaną metodą Newtona (234)
    • 4.1.5. Metody prywatne klasy TRozRowNielin: iloczyn skalarny funkcji wektorowych - funkcja TRozRowNielin.FU gradient funkcji skalarnej - procedura TRozRowNielin.GradFU (235)
    • 4.1.6. Metoda prywatna klasy TRozRowNielin: generacja macierzy hesjanu - funkcja TRozRowNielin.HesjanFU (236)
    • 4.1.7. Zmodyfikowana metoda Newtona jako metoda publiczna klasy TRozRowNielin - funkcja TRozRowNielin.ZmodyfikowanaMetodaNewtona (237)
    • 4.1.8. Rozwiązywania układów nieliniowych metodą iteracyjną w ramach klasy TRozRowNielin - funkcja TRozRowNielin.MetodaIteracyjna (238)
  • 4.2. Wyznaczanie zer wielomianów metodą Bairstowa i Laguerre'a w ramach klasy TZeraWielomianow (240)
    • 4.2.1. Dzielenie wielomianów o współczynnikach rzeczywistych przez czynnik liniowy według algorytmu Hornera jako metoda prywatna klasy TZeraWielomianow (243)
    • 4.2.2. Dzielenie wielomianu przez czynnik kwadratowy jako metoda prywatna klasy TZeraWielomianow - procedura TZeraWielomianow.Div2 (245)
    • 4.2.3. Wyznaczanie dzielników wielomianu stopnia N>2 w postaci trójmianu kwadratowego metodą Bairstowa jako metoda prywatna klasy TZeraWielomianow - funkcja TZeraWielomianow.Bairstow (246)
    • 4.2.4. Wyznaczanie zer wielomianów o współczynnika rzeczywistych jako metoda publiczna klasy TZeraWielomianow - funkcja TZeraWielomianow.ZeraWielBairstow (251)
    • 4.2.5. Wyznaczanie zer wielomianu metodą Laguerre'a jako metoda prywatna klasy TZeraWielomianow - funkcja TZeraWielomianow.Laguerre (252)
    • 4.2.6. Wyznaczanie zer wielomianu metodą Laguerre'a jako metoda publiczna klasy TZeraWielomianow - funkcja TZeraWielomianow.ZeraWielLaguerre (254)
  • 4.3. Wyznaczanie wartości własnych macierzy metodami Bairstowa i Laguerre'a w ramach klasy TWartosciWlasneMac (257)
    • 4.3.1. Wyznaczanie współczynników wielomianu charakterystycznego macierzy kwadratowej metodą Kryłowa jako metoda prywatna klasy TWartosciWlasneMac - funkcja TWartosciWlasneMac.WspWielChar (259)
    • 4.3.2. Wyznaczanie wartości własnych macierzy metodą Bairstowa jako metoda publiczna klasy TWartosciWlasneMac - funkcja TWartosciWlasneMac.WartosciWlasneMacierzyBairstow (261)
    • 4.3.3. Wyznaczanie wartości własnych macierzy metodą Laguerre'a jako metoda publiczna klasy TWartosciWlasneMac- funkcja TWartosciWlasneMac.WartosciWlasneMacierzyLaguerre (264)
  • 4.4. Wyznaczanie zer funkcji jednej zmiennej metodą połowienia przedziału - funkcja ZeraFun (265)

Przykłady zastosowań metod klas z modułu RoNieLin4 (266)

  • Przykład 4.1. (266)
  • Przykład 4.2. (269)
  • Przykład 4.3. (272)
  • Przykład 4.4. (273)
  • Przykład 4.5. (274)

Rozdział 5. Układy zwyczajnych równań różniczkowych nieliniowych - moduł RoRoNl4 (275)

  • 5.1. Układ równań różniczkowych jako klasa programowania obiektowego (277)
    • 5.1.1. Definicje typów dla modułu RoRoNl4 (277)
    • 5.1.2. Definicja klasy prototypowej dla klas potomnych dotyczących metod rozwiązywania układu równań różniczkowych (278)
    • 5.1.3. Procedury pomocnicze dla modułu RoRoNl4 (283)
  • 5.2. Metody Rungego-Kutty - metoda TRungeKutty (284)
  • 5.3. Rozwiązywanie układu równań różniczkowych zwyczajnych metodą Rungego-Kutty z automatycznym doborem kroku całkowania - metoda TRungeKutty.Obliczaj - metoda TRoRoNl.Rozwiaz (288)
  • 5.4. Metody Fehlberga - metoda Fehlberg (292)
  • 5.5. Rozwiązanie układu równań różniczkowych nieliniowych zwyczajnych metodą Fehlberga z automatycznym doborem kroku całkowania - metoda TFehlberg.Obliczaj - metoda TRoRoNL.Rozwiaz (297)
  • 5.6. Metoda wielokrokowa rozwiązywania układu równań różniczkowych nieliniowych z członem przewidywania AdamsaBashforta oraz członem korekcyjnym Adamsa-Multona z automatycznym doborem kroku i rzędu (301)
    • 5.6.1. Algorytm Adamsa - Bashfortha (302)
    • 5.6.2. Algorytm Adamsa-Multona (303)
    • 5.6.3. Algorytm przewidywania i korekcji wyrażone przez macierz Nordsiecka (307)
    • 5.6.4. Faza wstępna obliczeń (319)
    • 5.6.5. Blok główny procedury MetAdamsMul - metoda TAdamsMulton.Obliczaj - metoda TRoRoNl.Rozwiaz (324)
  • 5.7. Rozwiązywanie układu równań nieliniowych metodą sztywno stabilnych algorytmów Geara - metoda TGeara.Obliczaj- metoda TRoRoNl.Rozwiaz (328)

Przykłady zastosowań metod klas z modułu RoRoNl4 (339)

  • Przykład 5.1. (339)
  • Przykład 5.2. (343)
  • Przykład 5.3. (345)
  • Przykład 5.4. (350)
  • Przykład 5.5. (352)
  • Przykład 5.6. (366)
  • Przykład 5.7. (377)

Rozdział 6. Układy równań różniczkowych liniowych o stałych współczynnikach - moduł RoRoLin4 (381)

  • 6.1. Równania różnicowe dla różnych aproksymacji funkcji wymuszających (386)
    • 6.1.1. Wymuszenie aproksymowane funkcjami przedziałami stałymi (387)
    • 6.1.2. Wymuszenie aproksymowane funkcjami przedziałami liniowymi (388)
    • 6.1.3. Wymuszenie aproksymowane wielomianem stopnia drugiego (389)
    • 6.1.4. Dobór kroku całkowania T ze względu na dobór górnej granicy błędu obliczania macierzy eAT oraz ze względu na numeryczną stabilność rozwiązania (391)
  • 6.2. Definicje typów dla modułu RoRoLin4 (393)
  • 6.3. Formowanie macierzy pomocniczych (398)
  • 6.4. Numeryczne rozwiązywanie równań różniczkowych liniowych o stałych współczynnikach dla aproksymacji wymuszeń funkcjami przedziałami stałymi - metoda TRoRoLinAprSta.Obliczaj (401)
  • 6.5. Numeryczne rozwiązywanie równań różniczkowych liniowych o stałych współczynnikach dla aproksymacji wymuszeń funkcjami przedziałami liniowymi - metoda TRoRoLinAprLin.Obliczaj (402)
  • 6.6. Numeryczne rozwiązywanie równań różniczkowych liniowych o stałych współczynnikach dla aproksymacji wymuszeń funkcjami przedziałami kwadratowymi - metoda TRoRoLinAprKwa.Obliczaj (403)

Przykłady zastosowań metod klasy TRoRoLin z modułu RoRoLin4 (404)

  • Przykład 6.1. (404)
  • Przykład 6.2. (412)
  • Przykład 6.3. (414)

Rozdział 7. Praktyka przekształceń Fouriera - moduł Fourier4 (417)

  • 7.1. Dyskretna transformacja Fouriera według algorytmu Hornera (425)
  • 7.2. Szybkie przekształcenie Fouriera wg algorytmu Cooleya-Tukeya (425)
  • 7.3. Szybkie przekształcenie Fouriera według algorytmu Sande'a-Tukeya (435)
  • 7.4. Definicja klasy do wyznaczania dyskretnej, prostej i odwrotnej transformacji Fouriera - klasa DyskretnaTransformFouriera (438)
  • 7.5. Obliczanie współczynników zespolonego szeregu Fouriera dla dowolnej funkcji okresowej - klasa WspolSzereguFourieraFunOkres (443)
  • 7.6. Obliczanie odwrotnej transformacji Fouriera dla dowolnej transformaty (446)

Przykłady zastosowań metod klas z modułu Fourier4 (451)

  • Przykład 7.1. (451)
  • Przykład 7.2. (457)
  • Przykład 7.3. (468)
  • Przykład 7.4. (470)
  • Przykład 7.5. (473)

Rozdział 8. Praktyka przekształceń Laplace'a - moduł Laplace4 (485)

  • 8.1. Numeryczne obliczanie transformacji odwrotnej Laplace'a w wybranej chwili czasu z zastosowaniem szeregów Fouriera (487)
  • 8.2. Numeryczne obliczanie transformacji odwrotnej Laplace'a w wybranej chwili czasowej z zastosowaniem szeregów Laguerre'a (491)
  • 8.3. Numeryczne obliczanie transformacji odwrotnej Laplace'a w wybranej chwili czasowej wg algorytmu Valsa (493)
  • 8.4. Definicja klasy do obliczania odwrotnej transformacji Laplace'a (497)
  • 8.5. Obliczanie transformacji odwrotnej Laplace'a funkcji wymiernej w oparciu o jej pozostałości w biegunach (508)
  • 8.6. Definicja klasy do obliczania odwrotnej transformacji Laplace'a funkcji wymiernej w oparciu o jej pozostałości w biegunach (512)

Przykłady zastosowań metod klas z modułu Laplace4 (520)

  • Przykład 8.1. (520)
  • Przykład 8.2. (526)
  • Przykład 8.3. (527)
  • Przykład 8.4. (531)
  • Przykład 8.5. (534)
  • Przykład 8.6. (536)

Dodatek (538)

Metody numeryczne w Delphi 4
Tytuł książki: "Metody numeryczne w Delphi 4"
Autor: Bernard Baron
Wydawnictwo: HELION
Cena: 90.00zł 63.90zł
Klienci, którzy kupili „Metody numeryczne w Delphi 4”, kupili także:
<b>Metodyki zarządzania projektami informatycznymi</b>, <font color="navy">Zdzisław Szyjewski</font>, <font color="green"> Wydawnictwo PLACET</font>
Metodyki zarządzania projektami informatycznymi, Zdzisław Szyjewski, Wydawnictwo PLACET
<b>Zanieczyszczenie powietrza przez pojazdy samochodowe</b>, <font color="navy">Jaromir Mysłowski</font>, <font color="green"> Wydawnictwo WKiŁ</font>
Zanieczyszczenie powietrza przez pojazdy samochodowe, Jaromir Mysłowski, Wydawnictwo WKiŁ
<b>Zaawansowana rachunkowość finansowa</b>, <font color="navy">Teresa Martyniuk, Danuta Małkowska</font>, <font color="green"> Wydawnictwo PWE</font>
Zaawansowana rachunkowość finansowa, Teresa Martyniuk, Danuta Małkowska, Wydawnictwo PWE
<b>Mistrz analizy danych. Od danych do wiedzy</b>, <font color="navy">John W. Foreman</font>, <font color="green"> Wydawnictwo HELION</font>
Mistrz analizy danych. Od danych do wiedzy, John W. Foreman, Wydawnictwo HELION
<b>Projektowanie wnętrz Minimalizm we wnętrzach</b>, <font color="navy">Etchetto R. Mariana Eguaras</font>, <font color="green"> Wydawnictwo Solis</font>
Projektowanie wnętrz Minimalizm we wnętrzach, Etchetto R. Mariana Eguaras, Wydawnictwo Solis
<b>Elektrodynamika kwantowa</b>, <font color="navy">Władimir B. Bierestecki, Jewgienij M. Lifszyc, Lew P. Pitajewski</font>, <font color="green"> Wydawnictwo Naukowe PWN</font>
Elektrodynamika kwantowa, Władimir B. Bierestecki, Jewgienij M. Lifszyc, Lew P. Pitajewski, Wydawnictwo Naukowe PWN
<b>Przedziwny człowiek. Sekretne życie Paula Diraca, geniusza mechaniki kwantowej</b>, <font color="navy">Graham Farmelo</font>, <font color="green"> Wydawnictwo Copernicus Center Press</font>
Przedziwny człowiek. Sekretne życie Paula Diraca, geniusza mechaniki kwantowej, Graham Farmelo, Wydawnictwo Copernicus Center Press
<b>Spedycja</b>, <font color="navy">Teresa Truś, Eugeniusz Januła, Żaneta Gutowska</font>, <font color="green"> Wydawnictwo Difin</font>
Spedycja, Teresa Truś, Eugeniusz Januła, Żaneta Gutowska, Wydawnictwo Difin
<b>Strategie zakupowe. Jak prowadzić udane negocjacje w łańcuchu dostaw</b>, <font color="navy">Marek Różycki</font>, <font color="green"> Wydawnictwo Onepress</font>
Strategie zakupowe. Jak prowadzić udane negocjacje w łańcuchu dostaw, Marek Różycki, Wydawnictwo Onepress
 Koszyk
1 x Excel 2016 PL. Kurs
1 x Tworzenie stron WWW Praktyczny kurs Wydanie II
1 x Architektura informacji w serwisach internetowych
1 x Inwestycje
1 x Catalyst - odkryj rynek obligacji
272.00zł
Producent
Tu można zobaczyć wszystkie książki z wydawnictwa:

Wydawnictwo HELION
 Kategoria:
 Informatyczne systemy zarzadzania
Komputerowe wspomaganie biznesu

Komputerowe wspomaganie biznesu

53.00zł
45.05zł
Informacje
Regulamin sklepu.
Koszty wysyłki.
Polityka prywatności.
Jak kupować?
Napisz do Nas.
 Wydawnictwa
 Poradniki
Kwalifikacja EE.08. Montaż i eksploatacja systemów komputerowych, urządzeń peryferyjnych i sieci. Część 2. Systemy opera Tomasz Kowalski, Tomasz Orkisz HELION
Język UML 2.0 w modelowaniu systemów informatycznych Stanisław Wrycza, Bartosz Marcinkowski, Krzysztof Wyrzykowski HELION
Projektowanie gier Podstawy Wydanie II Ernest Adams HELION
Technologia przetwórstwa mięsa w pytaniach i odpowiedziach Adam Olszewski WNT
Solid Edge Komputerowe wspomaganie projektowania Grzegorz Kazimierczak, Bernard Pacula, Adam Budzyński HELION
Python rozmówki Brad Dayley HELION
Biologia Chemia Fizyka Jakie to proste! Carol Vorderman Arkady
Solid Edge 17 Podstawy Grzegorz Kazimierczak HELION
Architektura systemów zarządzania przedsiębiorstwem Wzorce projektowe Martin Fowler HELION

środa, 26 wrzesień 2018   Mapa strony |  Nowości |  Dzisiejsze promocje |  Koszty wysyłki |  Kontakt z nami