Zaawansowane wyszukiwanie
  Strona Główna » Sklep » Programy matematyczne » Metody numeryczne » Moje Konto  |  Zawartość Koszyka  |  Do Kasy   
 Wybierz kategorię
Algorytmy Wzorce UML
Bazy danych
Bezpieczeństwo
Bioinformatyka
Biznes Ekonomia Firma
Chemia
DTP Design
E-biznes
Ekonometria
Elektronika Elektrotechnika
Energetyka
Fizyka
GIS
Grafika użytkowa
Hardware
Informatyczne systemy zarządzania
Informatyka w szkole
Internet
Języki programowania
Matematyka
Multimedia
Obsługa komputera
Office
Poradniki
Programowanie gier
Programy inżynierskie
Programy matematyczne
  Mathcad Mathematica
  Matlab Labview Scilab
  Metody numeryczne
  Symulacje komputerowe
Serwery
Sieci Firewalle Protokoły
Słowniki
Systemy operacyjne
Technika
Telekomunikacja
Tworzenie stron WWW

Zobacz pełny katalog »
 Wydawnictwo:
 APN Promise
Progresywne aplikacje webowe Potęga aplikacji w przeglądarce

Progresywne aplikacje webowe Potęga aplikacji w przeglądarce

69.90zł
55.92zł
Metody numeryczne w Delphi 4 90.00zł 65.70zł
Metody numeryczne w Delphi 4

Autor: Bernard Baron

ISBN: 83-7197-141-9

Ilość stron: 584

Data wydania: 11/1999

W książce przedstawiono szereg najpopularniejszych algorytmów metod numerycznych oraz ich implementacje w języku Object Pascal, stanowiącym podstawę zintegrowanego środowiska programowania Delphi dla Windows95/98/NT. Każda z prezentowanych metod została dokładnie opisana i zilustrowana przykładowym programem, co umożliwia Czytelnikowi dogłębne prześledzenie zamieszczonych konstrukcji, jak również wprowadzanie własnych udoskonaleń.

Książka może być pomocna dla studentów, pracowników naukowych i programistów, którzy w codziennej praktyce stykają się z koniecznością rozwiązywania zagadnień obliczeniowych. Na dołączonej do książki dyskietce zamieszczono kody źródłowe wszystkich omawianych programów i bibliotek.

Rozdziały:

Wstęp. Definicja klas macierzowych - moduł Macierze4 (14)

Rozdział 1. Algebra macierzy i równania liniowe - moduł AlgeLin4 (19)

  • 1.1. Suma macierzy - procedura ADDMAC (21)
  • 1.2. Różnica macierzy - funkcja SubMac (21)
  • 1.3. Mnożenie macierzy przez liczbę - funkcja MulMacR (22)
  • 1.4. Iloczyn dwóch macierzy - funkcja MulMac (23)
  • 1.5. Macierz jednostkowa - funkcja MacJeden (24)
  • 1.6. Norma macierzy - funkcja NorMac (24)
  • 1.7. Funkcja macierzowa eB - funkcja ExpMac (25)
  • 1.8. Metoda bezpośredniego rozwiązywania układu równań macierzowych metodą eliminacji Gaussa -funkcja RRMAD1 (27)
  • 1.9. Skalowanie układu równań liniowych - funkcja SkalRowMac (32)
  • 1.10. Rozwiązywanie układu równań liniowych wg algorytmu Crouta - funkcja RRMAD2 (34)
  • 1.11. Obliczanie macierzy odwrotnej metodą eliminacji Gaussa - funkcja OdwMac1 (39)
  • 1.12. Obliczanie macierzy odwrotnej metodą Crouta - funkcja OdwMac2 (44)
  • 1.13. Obliczanie wyznacznika macierzy kwadratowej - funkcja DET (49)
  • 1.14. Wskaźnik uwarunkowania macierzy - funkcja WUMac (51)
  • 1.15. Obliczanie wartości własnej macierzy kwadratowej A o największym module - funkcja MWWM (52)
  • 1.16. Obliczanie wartości własnej macierzy 1-aA o największym module - funkcja MWWMA (54)
  • 1.17. Rozwiązywanie układu równań liniowych metodą iteracji Jacobiego oraz Richardsona - funkcja RRMAIRich (55)
  • 1.18. Rozwiązywanie układu równań metodą Gaussa-Seidela oraz metodą nadrelaksacji - funkcja RRMAIGS (58)
  • 1.19. Pseudorozwiązanie układu nadokreślonego - funkcja PseRoz - funkcja OdwMac3 (61)
  • 1.20. Metoda najmniejszych kwadratów - funkcja PseRozNK (67)
  • 1.21. Algorytm Crouta rozwiązywania rzadkich układów równań liniowych - klasa TRozRowMacRzadkaCrout (70)
  • 1.22. Algorytmy iteracyjne Richardsona oraz Gaussa-Seidela dla macierzy rzadkich - klasa TRozRowMacRzadkaIter (78)

Przykłady zastosowań procedur i funkcji z modułu AlgeLin4 (83)

  • Przykład 1.1. (83)
  • Przykład 1.2. (89)
  • Przykład 1.3. (89)
  • Przykład 1.4. (90)
  • Przykład 1.5. (91)
  • Przykład 1.6. (92)
  • Przykład 1.7. (93)
  • Przykład 1.8. (96)

Rozdział 2. Liczby zespolone i równania liniowe o współczynnikach zespolonych - moduły AlgeZes4, AlgMZes4 (97)

  • 2.1. Stałe i typy zmiennych dla modułu AlgeZes4 (98)
  • 2.2. Dodawanie liczb zespolonych - funkcja FAdd (99)
  • 2.3. Mnożenie liczb zespolonych - funkcja FMul (99)
  • 2.4. Odejmowanie liczb zespolonych - funkcja FSub (99)
  • 2.5. Dzielenie liczb zespolonych - funkcja FDiw (100)
  • 2.6. Iloczyn liczby zespolonej i rzeczywistej - funkcja FMulrz (101)
  • 2.7. Iloraz liczby zespolonej przez rzeczywistą - funkcja FDiwzr (101)
  • 2.8. Iloraz liczby rzeczywistej przez zespoloną - funkcja FDiwrz (102)
  • 2.9. Odwrotność liczby zespolonej - funkcja FOdw (102)
  • 2.10. Liczby sprzężone - funkcja FSprz (103)
  • 2.11. Moduł liczby zespolonej - funkcja Modul (103)
  • 2.12. Argument liczby zespolonej - funkcja Arg (103)
  • 2.13. Kwadrat modułu liczby zespolonej - funkcja KwModul (105)
  • 2.14. Macierze zespolone - klasa TMacierzZ (105)
  • 2.15. Macierz zespolona transponowana - funkcja TranMacZ (106)
  • 2.16. Suma macierzy zespolonych - funkcja AddMacZ (106)
  • 2.17. Różnica macierzy zespolonych - funkcja SubMacZ (107)
  • 2.18. Iloczyn dwóch macierzy zespolonych - funkcja MulMacZ (108)
  • 2.19. Iloczyn macierzy zespolonej przez liczbę zespoloną - funkcja MulMacZz (109)
  • 2.20. Macierz zespolona jednostkowa - funkcja MacJedenZ (109)
  • 2.21. Rozwiązywanie równania macierzowego zespolonego metodą eliminacji Gaussa - funkcja RRMaZ1 (110)
  • 2.22. Skalowanie równania macierzowego zespolonego - funkcja SkalRowMacZ (112)
  • 2.23. Obliczanie macierzy odwrotnej macierzy zespolonej według algorytmu Gaussa - funkcja OdwMacZ1 (112)
  • 2.24. Rozwiązanie równania macierzowego zespolonego metodą Crouta-Doolittle'a - funkcja RRMaZ2 (114)
  • 2.25. Obliczanie macierzy odwrotnej macierzy zespolonej metodą Crouta - funkcja OdwMacZ2 (117)
  • 2.26. Obliczanie wyznacznika macierzy zespolonej - funkcja DetZ (119)
  • 2.27. Norma macierzy zespolonej - funkcja NorMacZ (121)
  • 2.28. Wskaźnik uwarunkowania macierzy zespolonej - funkcja WUMacZ (122)
  • 2.29. Wartość własna macierzy zespolonej o największym module - funkcja MWWMZ (122)
  • 2.30. Wartość własna macierzy zespolonej 1-aA o największym module - funkcja MWWMZA (123)
  • 2.31. Rozwiązywanie równania macierzowego zespolonego metodami Gaussa-Seidela oraz nadrelaksacji - funkcja RRMAZIGS (125)
  • 2.32. Rozwiązywanie równania macierzowego zespolonego metodami iteracyjnymi Jacobiego oraz Richardsona - funkcja RRMAZIRich (127)
  • 2.33. Algorytm Crouta rozwiązywania rzadkich układów równań liniowych zespolonych - klasa TRozRowMacRzadkaZespolCrout (129)
  • 2.34. Metody iteracyjne rozwiązywania rzadkich układów równań liniowych zespolonych - klasa TRozRowMacRzadkaZespolIter (134)

Przykłady zastosowań procedur i funkcji z modułów AlgeZes4 i AlgMZes4 (140)

  • Przykład 2.1. (140)
  • Przykład 2.2. (144)
  • Przykład 2.3. (150)
  • Przykład 2.4. (150)
  • Przykład 2.5. (152)
  • Przykład 2.6. (158)

Rozdział 3. Wybrane metody poszukiwania minimum funkcji wielu zmiennych - moduł MinFun4 (162)

  • 3.1. Wyznaczenie minimum funkcji wielu zmiennych bezgradientową metodą poszukiwań prostych Hooke'a-Jeevesa jako metoda klasy TMinFunMetBezGrad - funkcja TMinFunMetBezGrad.MinFunHJ (167)
  • 3.2. Bezgradientowa metoda "złotego podziału" poszukiwania minimum w kierunku jako metoda prywatna klasy TMinFunMetBezGrad - funkcja TMinFunMetBezGrad.MinKierrzp (170)
  • 3.3. Bezgradientowa metoda Powella poszukiwania minimum funkcji wielu zmiennych jako metoda publiczna klasy TMinFunMetBezGrad - funkcja TMinFunMetBezGrad .MinFunPo (178)
  • 3.4. Wyznaczanie gradientu funkcji rzeczywistej wielu zmiennych jako metoda prywatna klasy TMinFunMetGradient -funkcja TMinFunMetGradient.GradF (182)
  • 3.5. Metoda ekspansji i kontrakcji geometrycznej z jednym testem badania współczynnika kroku przy poszukiwaniu minimum w kierunku jako metoda prywatna klasy TMinFunMetGradient - funkcja TMinFunMetGradient.MiniKier1 (184)
  • 3.6. Metoda aproksymacji parabolicznej z jednym testem badania współczynnika kroku przy poszukiwaniu minimum w kierunku jako metoda prywatna klasy TMinFunMetGradient - funkcja TMinFunMetGradient.MiniKier2 (187)
  • 3.7. Algorytm największego spadku jako metody klasy TMinFunMetGradient - funkcja TMinFunMetGradient. MinFunNajSpadku1 - funkcja TMinFunMetGradient. MinFunNajSpadku2 (191)
  • 3.8. Hesjan funkcji rzeczywistej wielu zmiennych jako metoda klasy TMinFunMetGradient - funkcja MinFunMetGradient.HesjanFun (195)
  • 3.9. Zmodyfikowany algorytm Newtona jako metody publiczne klasy TMinFunMetGradient - funkcja TMinFunMetGradient.MiniFunZmodNewton1 - funkcja TMinFunMetGradient.MiniFunZmodNewton2 (199)
  • 3.10. Metoda sympleksowa obliczania minimum liniowej funkcji wielu zmiennych z ograniczeniami liniowymi (202)

Przykłady zastosowań metod klas z modułu MinFun4 (216)

  • Przykład 3.1. (216)
  • Przykład 3.2. (219)

Rozdział 4. Równania nieliniowe, zera wielomianów, wartości własne macierzy - moduł RoNieLin4 (225)

  • 4.1. Algorytmy rozwiązywania układów równań nieliniowych jako metody klasy TRozRowNielin (226)
    • 4.1.1. Macierz Jacobiego funkcji wektorowej F(X) jako metoda prywatna klasy TRozRowNielin - funkcja TRozRowNielin.GeneracjaMacierzyJacobiego (227)
    • 4.1.2. Rozwiązywanie układów równań nieliniowych metodą Newtona jako metoda publiczna klasy TRozRowNielin - funkcja TRozRowNielin.MetodaNewtona (228)
    • 4.1.3. Rozwiązywanie układów równań nieliniowych metodą gradientową w ramach klasy TRozRowNielin - funkcja TRozRowNielin.MetodaGradientowa (230)
    • 4.1.4. Rozwiązywanie układu równań nieliniowych zmodyfikowaną metodą Newtona (234)
    • 4.1.5. Metody prywatne klasy TRozRowNielin: iloczyn skalarny funkcji wektorowych - funkcja TRozRowNielin.FU gradient funkcji skalarnej - procedura TRozRowNielin.GradFU (235)
    • 4.1.6. Metoda prywatna klasy TRozRowNielin: generacja macierzy hesjanu - funkcja TRozRowNielin.HesjanFU (236)
    • 4.1.7. Zmodyfikowana metoda Newtona jako metoda publiczna klasy TRozRowNielin - funkcja TRozRowNielin.ZmodyfikowanaMetodaNewtona (237)
    • 4.1.8. Rozwiązywania układów nieliniowych metodą iteracyjną w ramach klasy TRozRowNielin - funkcja TRozRowNielin.MetodaIteracyjna (238)
  • 4.2. Wyznaczanie zer wielomianów metodą Bairstowa i Laguerre'a w ramach klasy TZeraWielomianow (240)
    • 4.2.1. Dzielenie wielomianów o współczynnikach rzeczywistych przez czynnik liniowy według algorytmu Hornera jako metoda prywatna klasy TZeraWielomianow (243)
    • 4.2.2. Dzielenie wielomianu przez czynnik kwadratowy jako metoda prywatna klasy TZeraWielomianow - procedura TZeraWielomianow.Div2 (245)
    • 4.2.3. Wyznaczanie dzielników wielomianu stopnia N>2 w postaci trójmianu kwadratowego metodą Bairstowa jako metoda prywatna klasy TZeraWielomianow - funkcja TZeraWielomianow.Bairstow (246)
    • 4.2.4. Wyznaczanie zer wielomianów o współczynnika rzeczywistych jako metoda publiczna klasy TZeraWielomianow - funkcja TZeraWielomianow.ZeraWielBairstow (251)
    • 4.2.5. Wyznaczanie zer wielomianu metodą Laguerre'a jako metoda prywatna klasy TZeraWielomianow - funkcja TZeraWielomianow.Laguerre (252)
    • 4.2.6. Wyznaczanie zer wielomianu metodą Laguerre'a jako metoda publiczna klasy TZeraWielomianow - funkcja TZeraWielomianow.ZeraWielLaguerre (254)
  • 4.3. Wyznaczanie wartości własnych macierzy metodami Bairstowa i Laguerre'a w ramach klasy TWartosciWlasneMac (257)
    • 4.3.1. Wyznaczanie współczynników wielomianu charakterystycznego macierzy kwadratowej metodą Kryłowa jako metoda prywatna klasy TWartosciWlasneMac - funkcja TWartosciWlasneMac.WspWielChar (259)
    • 4.3.2. Wyznaczanie wartości własnych macierzy metodą Bairstowa jako metoda publiczna klasy TWartosciWlasneMac - funkcja TWartosciWlasneMac.WartosciWlasneMacierzyBairstow (261)
    • 4.3.3. Wyznaczanie wartości własnych macierzy metodą Laguerre'a jako metoda publiczna klasy TWartosciWlasneMac- funkcja TWartosciWlasneMac.WartosciWlasneMacierzyLaguerre (264)
  • 4.4. Wyznaczanie zer funkcji jednej zmiennej metodą połowienia przedziału - funkcja ZeraFun (265)

Przykłady zastosowań metod klas z modułu RoNieLin4 (266)

  • Przykład 4.1. (266)
  • Przykład 4.2. (269)
  • Przykład 4.3. (272)
  • Przykład 4.4. (273)
  • Przykład 4.5. (274)

Rozdział 5. Układy zwyczajnych równań różniczkowych nieliniowych - moduł RoRoNl4 (275)

  • 5.1. Układ równań różniczkowych jako klasa programowania obiektowego (277)
    • 5.1.1. Definicje typów dla modułu RoRoNl4 (277)
    • 5.1.2. Definicja klasy prototypowej dla klas potomnych dotyczących metod rozwiązywania układu równań różniczkowych (278)
    • 5.1.3. Procedury pomocnicze dla modułu RoRoNl4 (283)
  • 5.2. Metody Rungego-Kutty - metoda TRungeKutty (284)
  • 5.3. Rozwiązywanie układu równań różniczkowych zwyczajnych metodą Rungego-Kutty z automatycznym doborem kroku całkowania - metoda TRungeKutty.Obliczaj - metoda TRoRoNl.Rozwiaz (288)
  • 5.4. Metody Fehlberga - metoda Fehlberg (292)
  • 5.5. Rozwiązanie układu równań różniczkowych nieliniowych zwyczajnych metodą Fehlberga z automatycznym doborem kroku całkowania - metoda TFehlberg.Obliczaj - metoda TRoRoNL.Rozwiaz (297)
  • 5.6. Metoda wielokrokowa rozwiązywania układu równań różniczkowych nieliniowych z członem przewidywania AdamsaBashforta oraz członem korekcyjnym Adamsa-Multona z automatycznym doborem kroku i rzędu (301)
    • 5.6.1. Algorytm Adamsa - Bashfortha (302)
    • 5.6.2. Algorytm Adamsa-Multona (303)
    • 5.6.3. Algorytm przewidywania i korekcji wyrażone przez macierz Nordsiecka (307)
    • 5.6.4. Faza wstępna obliczeń (319)
    • 5.6.5. Blok główny procedury MetAdamsMul - metoda TAdamsMulton.Obliczaj - metoda TRoRoNl.Rozwiaz (324)
  • 5.7. Rozwiązywanie układu równań nieliniowych metodą sztywno stabilnych algorytmów Geara - metoda TGeara.Obliczaj- metoda TRoRoNl.Rozwiaz (328)

Przykłady zastosowań metod klas z modułu RoRoNl4 (339)

  • Przykład 5.1. (339)
  • Przykład 5.2. (343)
  • Przykład 5.3. (345)
  • Przykład 5.4. (350)
  • Przykład 5.5. (352)
  • Przykład 5.6. (366)
  • Przykład 5.7. (377)

Rozdział 6. Układy równań różniczkowych liniowych o stałych współczynnikach - moduł RoRoLin4 (381)

  • 6.1. Równania różnicowe dla różnych aproksymacji funkcji wymuszających (386)
    • 6.1.1. Wymuszenie aproksymowane funkcjami przedziałami stałymi (387)
    • 6.1.2. Wymuszenie aproksymowane funkcjami przedziałami liniowymi (388)
    • 6.1.3. Wymuszenie aproksymowane wielomianem stopnia drugiego (389)
    • 6.1.4. Dobór kroku całkowania T ze względu na dobór górnej granicy błędu obliczania macierzy eAT oraz ze względu na numeryczną stabilność rozwiązania (391)
  • 6.2. Definicje typów dla modułu RoRoLin4 (393)
  • 6.3. Formowanie macierzy pomocniczych (398)
  • 6.4. Numeryczne rozwiązywanie równań różniczkowych liniowych o stałych współczynnikach dla aproksymacji wymuszeń funkcjami przedziałami stałymi - metoda TRoRoLinAprSta.Obliczaj (401)
  • 6.5. Numeryczne rozwiązywanie równań różniczkowych liniowych o stałych współczynnikach dla aproksymacji wymuszeń funkcjami przedziałami liniowymi - metoda TRoRoLinAprLin.Obliczaj (402)
  • 6.6. Numeryczne rozwiązywanie równań różniczkowych liniowych o stałych współczynnikach dla aproksymacji wymuszeń funkcjami przedziałami kwadratowymi - metoda TRoRoLinAprKwa.Obliczaj (403)

Przykłady zastosowań metod klasy TRoRoLin z modułu RoRoLin4 (404)

  • Przykład 6.1. (404)
  • Przykład 6.2. (412)
  • Przykład 6.3. (414)

Rozdział 7. Praktyka przekształceń Fouriera - moduł Fourier4 (417)

  • 7.1. Dyskretna transformacja Fouriera według algorytmu Hornera (425)
  • 7.2. Szybkie przekształcenie Fouriera wg algorytmu Cooleya-Tukeya (425)
  • 7.3. Szybkie przekształcenie Fouriera według algorytmu Sande'a-Tukeya (435)
  • 7.4. Definicja klasy do wyznaczania dyskretnej, prostej i odwrotnej transformacji Fouriera - klasa DyskretnaTransformFouriera (438)
  • 7.5. Obliczanie współczynników zespolonego szeregu Fouriera dla dowolnej funkcji okresowej - klasa WspolSzereguFourieraFunOkres (443)
  • 7.6. Obliczanie odwrotnej transformacji Fouriera dla dowolnej transformaty (446)

Przykłady zastosowań metod klas z modułu Fourier4 (451)

  • Przykład 7.1. (451)
  • Przykład 7.2. (457)
  • Przykład 7.3. (468)
  • Przykład 7.4. (470)
  • Przykład 7.5. (473)

Rozdział 8. Praktyka przekształceń Laplace'a - moduł Laplace4 (485)

  • 8.1. Numeryczne obliczanie transformacji odwrotnej Laplace'a w wybranej chwili czasu z zastosowaniem szeregów Fouriera (487)
  • 8.2. Numeryczne obliczanie transformacji odwrotnej Laplace'a w wybranej chwili czasowej z zastosowaniem szeregów Laguerre'a (491)
  • 8.3. Numeryczne obliczanie transformacji odwrotnej Laplace'a w wybranej chwili czasowej wg algorytmu Valsa (493)
  • 8.4. Definicja klasy do obliczania odwrotnej transformacji Laplace'a (497)
  • 8.5. Obliczanie transformacji odwrotnej Laplace'a funkcji wymiernej w oparciu o jej pozostałości w biegunach (508)
  • 8.6. Definicja klasy do obliczania odwrotnej transformacji Laplace'a funkcji wymiernej w oparciu o jej pozostałości w biegunach (512)

Przykłady zastosowań metod klas z modułu Laplace4 (520)

  • Przykład 8.1. (520)
  • Przykład 8.2. (526)
  • Przykład 8.3. (527)
  • Przykład 8.4. (531)
  • Przykład 8.5. (534)
  • Przykład 8.6. (536)

Dodatek (538)

Metody numeryczne w Delphi 4
Tytuł książki: "Metody numeryczne w Delphi 4"
Autor: Bernard Baron
Wydawnictwo: HELION
Cena: 90.00zł 65.70zł
Klienci, którzy kupili „Metody numeryczne w Delphi 4”, kupili także:
<b>Sfery w przestrzeni, czyli tajemnice starożytnej astronomii</b>, <font color="navy">Maria Magdalena Kosowska</font>, <font color="green"> Wydawnictwo Łośgraf</font>
Sfery w przestrzeni, czyli tajemnice starożytnej astronomii, Maria Magdalena Kosowska, Wydawnictwo Łośgraf
<b>Metoda wariacyjna w modelu Diraca</b>, <font color="navy">Grzegorz Pestka</font>, <font color="green"> Wydawnictwo Wydawnictwo Naukowe UMK</font>
Metoda wariacyjna w modelu Diraca, Grzegorz Pestka, Wydawnictwo Wydawnictwo Naukowe UMK
<b>Toyota Yaris modele 1999-2005</b>, <font color="navy">R. M. Jex</font>, <font color="green"> Wydawnictwo WKiŁ</font>
Toyota Yaris modele 1999-2005, R. M. Jex, Wydawnictwo WKiŁ
<b>W sercu jogi Ćwiczenia dla ciała i ducha</b>, <font color="navy">T. K. V. Desikachar</font>, <font color="green"> Wydawnictwo Septem</font>
W sercu jogi Ćwiczenia dla ciała i ducha, T. K. V. Desikachar, Wydawnictwo Septem
<b>Packet Tracer 6 dla kursów CISCO z przykładami i ćwiczeniami Tom 2 Podstawy konfiguracji IOS</b>, <font color="navy">Marek Smyczek, Robert Wszelaki</font>, <font color="green"> Wydawnictwo ITSTART</font>
Packet Tracer 6 dla kursów CISCO z przykładami i ćwiczeniami Tom 2 Podstawy konfiguracji IOS, Marek Smyczek, Robert Wszelaki, Wydawnictwo ITSTART
<b>Geodezja inżynieryjno-drogowa</b>, <font color="navy">Stefan Przewłocki</font>, <font color="green"> Wydawnictwo Naukowe PWN</font>
Geodezja inżynieryjno-drogowa, Stefan Przewłocki, Wydawnictwo Naukowe PWN
<b>Microsoft SQL Server 2012 Optymalizacja kwerend T-SQL przy użyciu funkcji okna</b>, <font color="navy">Itzik Ben-Gan</font>, <font color="green"> Wydawnictwo Microsoft Press</font>
Microsoft SQL Server 2012 Optymalizacja kwerend T-SQL przy użyciu funkcji okna, Itzik Ben-Gan, Wydawnictwo Microsoft Press
<b>Zgrana drużyna rodzinna! Jak bez krzyków i zrzędzenia nakłonić dzieci do współpracy</b>, <font color="navy">Elizabeth Pantley</font>, <font color="green"> Wydawnictwo Onepress</font>
Zgrana drużyna rodzinna! Jak bez krzyków i zrzędzenia nakłonić dzieci do współpracy, Elizabeth Pantley, Wydawnictwo Onepress
<b>Repetytorium gimnazjalisty Fizyka</b>, <font color="navy">Małgorzata Tworowska</font>, <font color="green"> Wydawnictwo Greg</font>
Repetytorium gimnazjalisty Fizyka, Małgorzata Tworowska, Wydawnictwo Greg
 Koszyk
0 przedmiotów
Producent
Tu można zobaczyć wszystkie książki z wydawnictwa:

Wydawnictwo HELION
 Kategoria:
 Informatyczne systemy zarzadzania
LSS Plutus Lean Six Sigma dla małych i średnich przedsiębiorstw

LSS Plutus Lean Six Sigma dla małych i średnich przedsiębiorstw

39.00zł
29.25zł
Informacje
Regulamin sklepu.
Koszty wysyłki.
Polityka prywatności.
Jak kupować?
Napisz do Nas.
 Wydawnictwa
 Poradniki
LATEX wiersz po wierszu Antoni Diller HELION
JavaScript mocne strony Douglas Crockford HELION
Architektura systemów zarządzania przedsiębiorstwem Wzorce projektowe Martin Fowler HELION
Algorytmy aproksymacyjne Vijay V. Vazarini WNT
Serwer SQL 2008 Usługi biznesowe Analiza i eksploracja danych Danuta Mendrala, Marcin Szeliga HELION
Podstawy fizyki Tom 3 Wydanie 2 David Halliday, Robert Resnick, Jearl Walker Naukowe PWN
Projekt Feniks. Powieść o IT, modelu DevOps i o tym, jak pomóc firmie w odniesieniu sukcesu Gene Kim, Kevin Behr, George Spafford HELION
SQL Rusz głową (Head first) Lynn Beighley HELION
101 zabezpieczeń przed atakami w sieci komputerowej Maciej Szmit, Marek Gusta, Mariusz Tomaszewski HELION

sobota, 19 styczeń 2019   Mapa strony |  Nowości |  Dzisiejsze promocje |  Koszty wysyłki |  Kontakt z nami