Zaawansowane wyszukiwanie
  Strona Główna » Sklep » Bioinformatyka » Moje Konto  |  Zawartość Koszyka  |  Do Kasy   
 Wybierz kategorię
Algorytmy Wzorce UML
Bazy danych
Bezpieczeństwo
Bioinformatyka
Biznes Ekonomia Firma
Chemia
DTP Design
E-biznes
Ekonometria
Elektronika Elektrotechnika
Energetyka
Fizyka
GIS
Grafika użytkowa
Hardware
Informatyczne systemy zarządzania
Informatyka w szkole
Internet
Języki programowania
Matematyka
Multimedia
Obsługa komputera
Office
Poradniki
Programowanie gier
Programy inżynierskie
Programy matematyczne
Serwery
Sieci Firewalle Protokoły
Słowniki
Systemy operacyjne
Technika
Telekomunikacja
Tworzenie stron WWW

Zobacz pełny katalog »
 Wydawnictwo:
 PWN
Wstęp do filozofii Krótkie wykłady z filozofii

Wstęp do filozofii Krótkie wykłady z filozofii

39.90zł
32.32zł
Matematyka dla biologów 43.35zł
Matematyka dla biologów

Autor: Dariusz Wrzosek

ISBN: 978-83-235-0351-4

Ilość stron: 310

Data wydania: 2008

Książka prowadzi Czytelnika od elementarnych pojęć matematyki do zagadnień bardziej zaawansowanych, wykorzystywanych przy tworzeniu modeli matematycznych w biologii i naukach pokrewnych.

Szerokim zakresem obejmuje zagadnienia matematyki dyskretnej i rachunku prawdopodobieństwa wykorzystywane w filogenetyce oraz metody analizy matematycznej stosowane w biotechnologii i ekologii.

Liczne przykłady i ilustracje czynią ją przystępnym podręcznikiem matematyki dla studentów biologii, biotechnologii, a także medycyny i nauk rolniczych. Jej istotnym uzupełnieniem jest zbiór zadań przygotowany przez Marka Bodnara.

Książka ta pomoże biologom w studiowaniu literatury biologicznej, w której coraz częściej wykorzystuje się nieelementarne modele matematyczne, może także ułatwić porozumienie i współpracę biologów z matematykami i fizykami.

Dr hab. Dariusz Wrzosek jest profesorem na Wydziale Matematyki Informatyki i Mechaniki Uniwersytetu Warszawskiego. Dorobek naukowy autora poświęcony jest badaniu i tworzeniu modeli matematycznych w naukach przyrodniczych.

Rozdziały:

1. Logika
1.1. Pojęcie zdania w logice
1.2. Podstawowe zdania złożone
1.3. Tautologie – prawa logiki
1.4. Wnioskowanie
1.5. Kwantyfikatory

2. Podstawy: zbiory, liczby, relacje
2.1. Matematyka jest nauką aksjomatyczną
2.2. Aksjomaty-pewniki
2.3. Operacje na zbiorach
2.4. Liczby naturalne
2.5. Liczby całkowite i wymierne
2.6. Liczby rzeczywiste
2.7. Liczby zespolone
2.8. Relacje

3. Zbiory nieskończone
3.1. Funkcje
3.2. Równoliczność zbiorów

4. Przestrzeń wektorowa. Metryka
4.1. Przestrzeń Rn
4.2. Macierze
4.3. Metryka

5. Funkcja potęgowa i wykładnicza. Logarytmy i ich zastosowania
5.1. Funkcje liniowe
5.2. Potęgowanie
5.3. Karły i olbrzymy
5.4. Funkcje potęgowe, funkcje wykładnicze, wielomiany
5.5. Logarytmy
5.6. Skala kwasowości pH, skala Richtera
5.7. Współrzędne log–log
5.8. Metoda najmniejszych kwadratów (regresji liniowej)

6. Matematyka dyskretna
6.1. Kombinatoryka
6.2. Grafy
6.3. Cykle w grafie
6.4. Drzewa filogenetyczne

7. Podstawy analizy matematycznej
7.1. Granica ciągu
7.2. Ciąg arytmetyczny, ciąg geometryczny
7.3. Szeregi liczbowe

8. Granica funkcji, ciągłość funkcji, pochodna funkcji
8.1. Granica funkcji
8.2. Ciągłość funkcji

9. Pochodna funkcji jednej zmiennej i jej własności
9.1. Definicja i interpretacja pochodnej funkcji
9.2. Obliczanie pochodnych
9.3. Ruch ciała, położenie, prędkość, przyspieszenie

10. Ekstrema funkcji, funkcje wypukłe, gradient funkcji wielu zmiennych
10.1. Twierdzenia Rolla i Lagrange’a
10.2. Równania nieliniowe
10.3. Minimum, maksimum funkcji
10.4. Zasada optymalizacji. Optymalne strategie ˙zerowania
10.5. Przybliżanie wartości funkcji
10.6. Funkcja wypukła, funkcja wklęsła
10.7. Pochodne cząstkowe funkcji wielu zmiennych

11. Całki i krzywe
11.1. Funkcja pierwotna, całka nieoznaczona
11.2. Całka oznaczona, pole obszaru
11.3. Całka niewłaściwa
11.4. Krzywe
11.5. Krzywa Kocha

12. Modele matematyczne w biologii
12.1. Co to jest model matematyczny
12.2. Weryfikacja modelu
12.3. Czas ciągły, czas dyskretny
12.4. Równanie Malthusa, wykładniczy wzrost populacji
12.5. Króliki Fibonacciego i liczba złotego podziału

13. Podstawowe modele wzrostu pojedynczej populacji w czasie ciągłym
13.1. Równanie różniczkowe, zmienne rozdzielone
13.2. Rozpad promieniotwórczy
13.3. Krzywa przeżywalności
13.4. Datowanie izotopem węgla 14C
13.5. Równanie logistyczne
13.6. Szacowanie liczebności populacji wg równania logistycznego
13.7. Eksploatacja zasobów pokarmowych

14. Modele oddziaływań międzypopulacyjnych w czasie ciągłym
14.1. Układy równań różniczkowych
14.2. Portret fazowy
14.3. Stabilność stanu stacjonarnego
14.4. Konkurencja, drapieżnictwo, mutualizm (symbioza)
14.5. Kinetyka reakcji chemicznych, reakcja Lotki

15. Modele populacyjne z czasem dyskretnym i modele ze strukturą wieku
15.1. Model logistyczny z czasem dyskretnym, chaos deterministyczny
15.2. Równanie logistyczne – związek między modelem z czasem ciągłym a modelem z czasem dyskretnym
15.3. Wzrost populacji z uwzględnieniem struktury wieku
15.4. Demografia
15.5. Model wzrostu populacji roślin dwuletnich

16. Podstawy rachunku prawdopodobieństwa. Modele probabilistyczne I 
16.1. Przestrzeń zdarzeń elementarnych
16.2. Aksjomaty rachunku prawdopodobieństwa
16.3. Prawdopodobieństwo warunkowe
16.4. Prawdopodobieństwo całkowite
16.5. Niezależność zdarzeń
16.6. Łańcuchy Markowa. Modele ewolucji molekularnej
16.7. Odległość filogenetyczna Jukesa–Cantora

17. Modele probabilistyczne II
17.1. Dyskretna zmienna losowa, wartość oczekiwana, wariancja
17.2. Niezależność zmiennych losowych
17.3. Ciąg prób Bernoulliego
17.4. Rozkład dwumianowy
17.5. Rozkład Poissona
17.6. Gra o sumie zerowej i gra sprawiedliwa
17.7. Gra gołąb–jastrząb
17.8. Strategia ewolucyjnie stabilna
17.9. Bit, informacja, entropia
17.10. Wskaźnik różnorodności biologicznej Shannona
17.11. Zmienne losowe o rozkładzie ciągłym
17.12. Rozkład jednostajny
17.13. Rozkład normalny
17.14. Centralne twierdzenie graniczne
17.15. Transport i dyfuzja

18. Zakończenie

Matematyka dla biologów
--- Pozycja niedostępna.---
Klienci, którzy kupili „Matematyka dla biologów”, kupili także:
<b>Miejscowa wentylacja wywiewna Poradnik Optymalizacja parametrów powietrza w pomieszczeniach pracy</b>, <font color="navy">Maciej Gliński</font>, <font color="green"> Wydawnictwo DW Medium</font>
Miejscowa wentylacja wywiewna Poradnik Optymalizacja parametrów powietrza w pomieszczeniach pracy, Maciej Gliński, Wydawnictwo DW Medium
<b>CSS według Erica Meyera Sztuka projektowania stron WWW</b>, <font color="navy">Eric A. Meyer</font>, <font color="green"> Wydawnictwo HELION</font>
CSS według Erica Meyera Sztuka projektowania stron WWW, Eric A. Meyer, Wydawnictwo HELION
<b>PowerPoint 2007 PL Poradnik dla nieinformatyków</b>, <font color="navy">Bogdan Krzymowski</font>, <font color="green"> Wydawnictwo HELP</font>
PowerPoint 2007 PL Poradnik dla nieinformatyków, Bogdan Krzymowski, Wydawnictwo HELP
<b>Lider mocnych osobowości Zostań przywódcą indywidualistów</b>, <font color="navy">Patrick J. McKenna, David H. Maister</font>, <font color="green"> Wydawnictwo Onepress</font>
Lider mocnych osobowości Zostań przywódcą indywidualistów, Patrick J. McKenna, David H. Maister, Wydawnictwo Onepress
<b>Elektrotechnika i elektronika w pojazdach samochodowych</b>, <font color="navy">Anton Herner, Hans-Jürgen Riehl</font>, <font color="green"> Wydawnictwo WKiŁ</font>
Elektrotechnika i elektronika w pojazdach samochodowych, Anton Herner, Hans-Jürgen Riehl, Wydawnictwo WKiŁ
<b>Krav Maga - Zaskocz Zniszcz Zniknij</b>, <font color="navy">Gershon Ben Keren</font>, <font color="green"> Wydawnictwo Bellona</font>
Krav Maga - Zaskocz Zniszcz Zniknij, Gershon Ben Keren, Wydawnictwo Bellona
<b>Mikroekonomia Kurs średni - ujęcie nowoczesne Wydanie IV</b>, <font color="navy">Hal R. Varian</font>, <font color="green"> Wydawnictwo Naukowe PWN</font>
Mikroekonomia Kurs średni - ujęcie nowoczesne Wydanie IV, Hal R. Varian, Wydawnictwo Naukowe PWN
<b>Skazany na trening 2 Zaawansowana zaprawa więzienna</b>, <font color="navy">Paul Wade</font>, <font color="green"> Wydawnictwo AHA</font>
Skazany na trening 2 Zaawansowana zaprawa więzienna, Paul Wade, Wydawnictwo AHA
<b>DDD. Kompendium wiedzy</b>, <font color="navy">Vaughn Vernon</font>, <font color="green"> Wydawnictwo HELION</font>
DDD. Kompendium wiedzy, Vaughn Vernon, Wydawnictwo HELION
 Koszyk
0 przedmiotów
Producent
Tu można zobaczyć wszystkie książki z wydawnictwa:

Wydawnictwo Uniwersytetu Warszawskiego
 Kategoria:
 Chemia
Jednopierwiastkowe struktury chemiczne

Jednopierwiastkowe struktury chemiczne

23.10zł
17.56zł
Informacje
Regulamin sklepu.
Koszty wysyłki.
Polityka prywatności.
Jak kupować?
Napisz do Nas.
 Wydawnictwa
 Poradniki
SAP R/3 Przewodnik dla menadżerów Vivek Kale HELION
Analiza i prezentacja danych w Microsoft Excel Vademecum Walkenbacha Wydanie II John Walkenbach, Michael Alexander HELION
Więcej niż C++ Wprowadzenie do bibliotek Boost Bjorn Karlsson HELION
Systemy Informacji Geograficznej Zarządzanie danymi przestrzennymi w GIS, SIP, SIT, LIS Leszek Litwin, Grzegorz Myrda HELION
Perełki programowania gier Vademecum profesjonalisty Tom 1 Mark DeLoura HELION
Sekrety cyfrowej ciemni Scotta Kelby'ego Edycja i obróbka zdjęć w programie Adobe Photoshop Lightroom 4 Scott Kelby HELION
ECDL Europejski Certyfikat Umiejętności Komputerowych Przewodnik Tom II Leszek Litwin HELION
Windows Server 2008 PL Biblia Jeffrey R. Shapiro HELION
Encyklopedia popularna PWN + CD Edycja 2015 Praca zbiorowa Naukowe PWN

czwartek, 27 czerwiec 2019   Mapa strony |  Nowości |  Dzisiejsze promocje |  Koszty wysyłki |  Kontakt z nami