Zaawansowane wyszukiwanie
  Strona Główna » Sklep » Algorytmy Wzorce UML » Sieci neuronowe » Moje Konto  |  Zawartość Koszyka  |  Do Kasy   
 Wybierz kategorię
Algorytmy Wzorce UML
  Algorytmy
  Inżynieria oprogramowania
  Sieci neuronowe
  Techniki programowania
  UML
  Wyrażenia regularne
  Wzorce projektowe
  Zarządzanie projektami
Bazy danych
Bezpieczeństwo
Bioinformatyka
Biznes Ekonomia Firma
Chemia
DTP Design
E-biznes
Ekonometria
Elektronika Elektrotechnika
Energetyka
Fizyka
GIS
Grafika użytkowa
Hardware
Informatyczne systemy zarządzania
Informatyka w szkole
Internet
Języki programowania
Matematyka
Multimedia
Obsługa komputera
Office
Poradniki
Programowanie gier
Programy inżynierskie
Programy matematyczne
Serwery
Sieci Firewalle Protokoły
Słowniki
Systemy operacyjne
Technika
Telekomunikacja
Tworzenie stron WWW

Zobacz pełny katalog »
 Wydawnictwo:
 MsPress
Windows Server 2008 R2 Usługi pulpitu zdalnego Resource Kit

Windows Server 2008 R2 Usługi pulpitu zdalnego Resource Kit

81.90zł
61.43zł
Inteligentna sieć. Algorytmy przyszłości. Wydanie II 54.90zł 38.43zł
Inteligentna sieć. Algorytmy przyszłości. Wydanie II

Tytuł: Inteligentna sieć. Algorytmy przyszłości. Wydanie II
Tytuł oryginalny Algorithms of the Intelligent Web, 2nd Edition
Autor: Douglas McIlwraith, Haralambos Marmanis, Dmitry Babenko
ISBN: 978-83-283-3250-8
Ilość stron: 248
Data wydania: 04/2017
Oprawa: Miękka
Format: 168x237
Wydawnictwo: HELION
Cena: 54.90zł 38.43zł


Określenie „inteligentna sieć” może przywodzić na myśl futurystyczną wizję maszyn przejmujących kontrolę nad światem i niszczących ludzkość, jednak w rzeczywistości jest związane z rozwojem technologii. Związane jest z powstawaniem oprogramowania, które potrafi się uczyć i reagować na zachowania użytkowników.

Oznacza też projektowanie i implementację inteligencji maszynowej. Inteligentna sieć rozwija się tu i teraz - znajomość zagadnień uczenia maszynowego i budowy inteligentnych algorytmów staje się bardzo potrzebna inżynierom oprogramowania!

Niniejsza książka jest przeznaczona dla osób, które chcą projektować inteligentne algorytmy, a przy tym mają podstawy z zakresu programowania, matematyki i statystyki. Przedstawiono tu schematy projektowe i praktyczne przykłady rozwiązań.

Opisano algorytmy, które przetwarzają strumienie danych pochodzące z internetu, a także systemy rekomendacji i klasyfikowania danych za pomocą algorytmów statystycznych, sieci neuronowych i uczenia głębokiego. Mimo że przyswojenie tych zagadnień wymaga wysiłku, bardzo ułatwi implementację nowoczesnych, inteligentnych aplikacji!

W tej książce między innymi:
• wprowadzenie do problemów algorytmów inteligentnych
• systemy rekomendacji i filtrowanie kolaboratywne
• wykorzystanie regresji logistycznej do wykrywania oszustw
• uczenie głębokie, uczenie na żywo i renesans sieci neuronowych
• podejmowanie decyzji
• perspektywy inteligentnej sieci

Inteligentny algorytm wyławia perły w strumieniach danych.

Spis treści:

Rozdział 1. Budowanie aplikacji na potrzeby inteligentnej sieci (19)
1.1. Inteligentny algorytm w akcji - Google Now (21)
1.2. Cykl życia inteligentnych algorytmów (23)
1.3. Inne przykłady inteligentnych algorytmów (24)
1.4. Czym inteligentne aplikacje nie są (25)
1.4.1. Inteligentne algorytmy nie są myślącymi maszynami do uniwersalnych zastosowań (25)
1.4.2. Inteligentne algorytmy nie zastąpią ludzi (25)
1.4.3. Inteligentne algorytmy nie są odkrywane przez przypadek (26)
1.5. Klasy inteligentnych algorytmów (26)
1.5.1. Sztuczna inteligencja (27)
1.5.2. Uczenie maszynowe (28)
1.5.3. Analityka predykcyjna (29)
1.6. Ocena działania inteligentnych algorytmów (30)
1.6.1. Ocena inteligencji (30)
1.6.2. Ocena predykcji (31)
1.7. Ważne uwagi na temat inteligentnych algorytmów (33)
1.7.1. Dane nie są wiarygodne (34)
1.7.2. Wnioskowanie wymaga czasu (34)
1.7.3. Wielkość ma znaczenie! (34)
1.7.4. Różne algorytmy skalują się w odmienny sposób (35)
1.7.5. Nie wszystko jest gwoździem! (35)
1.7.6. Dane to nie wszystko (35)
1.7.7. Czas treningu może się zmieniać (36)
1.7.8. Celem jest generalizacja (36)
1.7.9. Ludzka intuicja nie zawsze się sprawdza (36)
1.7.10. Pomyśl o zaprojektowaniu nowych cech (36)
1.7.11. Poznaj wiele różnych modeli (36)
1.7.12. Korelacja nie oznacza związku przyczynowo-skutkowego (37)
1.8. Podsumowanie (37)

Rozdział 2. Wydobywanie struktury z danych - klastrowanie i transformacja danych (39)
2.1. Dane, struktura, błąd systematyczny i szum (41)
2.2. "Przekleństwo wymiarów" (44)
2.3. Algorytm k-średnich (45)
2.3.1. K-średnie w praktyce (49)
2.4. Gaussowski model mieszany (52)
2.4.1. Czym jest rozkład Gaussa? (52)
2.4.2. Maksymalizacja wartości oczekiwanej i rozkład Gaussa (55)
2.4.3. Gaussowski model mieszany (55)
2.4.4. Przykład uczenia z użyciem gaussowskiego modelu mieszanego (57)
2.5. Zależności między k-średnimi i algorytmem GMM (59)
2.6. Transformacje osi danych (60)
2.6.1. Wektory własne i wartości własne (61)
2.6.2. Analiza głównych składowych (61)
2.6.3. Przykład zastosowania analizy głównych składowych (63)
2.7. Podsumowanie (65)

Rozdział 3. Rekomendowanie odpowiednich treści (67)
3.1. Wprowadzenie - internetowy sklep z filmami (68)
3.2. Odległość i podobieństwo (69)
3.2.1. Więcej o odległości i podobieństwie (73)
3.2.2. Który wzór na podobieństwo jest najlepszy? (75)
3.3. Jak działają systemy rekomendacji? (76)
3.4. Filtrowanie kolaboratywne według użytkowników (77)
3.5. Rekomendacje według modelu z wykorzystaniem rozkładu SVD (82)
3.5.1. Rozkład SVD (83)
3.5.2. Rekomendacje z użyciem rozkładu SVD - wybór filmów dla danego użytkownika (84)
3.5.3. Rekomendacje z wykorzystaniem rozkładu SVD - określanie użytkowników, których może zainteresować dany film (90)
3.6. Konkurs Netflix Prize (93)
3.7. Ocenianie systemu rekomendacji (94)
3.8. Podsumowanie (96)

Rozdział 4. Klasyfikowanie - umieszczanie elementów tam, gdzie ich miejsce (97)
4.1. Do czego potrzebna jest klasyfikacja? (98)
4.2. Przegląd klasyfikatorów (101)
4.2.1. Strukturalne algorytmy klasyfikacji (102)
4.2.2. Statystyczne algorytmy klasyfikacji (104)
4.2.3. Cykl życia klasyfikatora (105)
4.3. Wykrywanie oszustw za pomocą regresji logistycznej (106)
4.3.1. Wprowadzenie do regresji liniowej (106)
4.3.2. Od regresji liniowej do logistycznej (108)
4.3.3. Implementowanie wykrywania oszustw (111)
4.4. Czy wyniki są wiarygodne? (119)
4.5. Klasyfikowanie w bardzo dużych zbiorach danych (122)
4.6. Podsumowanie (124)

Rozdział 5. Studium przypadku - prognozowanie kliknięć w reklamie internetowej (127)
5.1. Historia i informacje wstępne (128)
5.2. Giełda (130)
5.2.1. Dopasowywanie plików cookie (130)
5.2.2. Oferty (131)
5.2.3. Powiadomienie o wygranej (lub przegranej) w licytacji (132)
5.2.4. Umieszczanie reklamy (132)
5.2.5. Monitorowanie reklam (132)
5.3. Czym jest agent? (133)
5.3.1. Wymagania stawiane agentowi (133)
5.4. Czym jest system podejmowania decyzji? (134)
5.4.1. Informacje o użytkowniku (135)
5.4.2. Informacje o przestrzeni reklamowej (135)
5.4.3. Informacje o kontekście (135)
5.4.4. Przygotowywanie danych (135)
5.4.5. Model dla systemu podejmowania decyzji (136)
5.4.6. Odwzorowywanie prognozowanego współczynnika kliknięć na oferowaną kwotę (136)
5.4.7. Inżynieria cech (137)
5.4.8. Trening modelu (137)
5.5. Predykcja kliknięć za pomocą biblioteki Vowpal Wabbit (138)
5.5.1. Format danych używany w VW (138)
5.5.2. Przygotowywanie zbioru danych (141)
5.5.3. Testowanie modelu (146)
5.5.4. Kalibrowanie modelu (148)
5.6. Komplikacje związane z budowaniem systemu podejmowania decyzji (150)
5.7. Przyszłość prognozowania zdarzeń w czasie rzeczywistym (150)
5.8. Podsumowanie (151)

Rozdział 6. Uczenie głębokie i sieci neuronowe (153)
6.1. Intuicyjne omówienie uczenia głębokiego (154)
6.2. Sieci neuronowe (155)
6.3. Perceptron (156)
6.3.1. Trening (158)
6.3.2. Trening perceptronu z użyciem pakietu scikit-learn (160)
6.3.3. Geometryczna interpretacja działania perceptronu dla dwóch wejść (162)
6.4. Perceptrony wielowarstwowe (164)
6.4.1. Trening z wykorzystaniem propagacji wstecznej (167)
6.4.2. Funkcje aktywacji (168)
6.4.3. Intuicyjne wyjaśnienie propagacji wstecznej (169)
6.4.4. Teoria propagacji wstecznej (170)
6.4.5. Wielowarstwowe sieci neuronowe w pakiecie scikit-learn (172)
6.4.6. Perceptron wielowarstwowy po zakończeniu nauki (174)
6.5. Zwiększanie głębokości - od wielowarstwowych sieci neuronowych do uczenia głębokiego (175)
6.5.1. Ograniczone maszyny Boltzmanna (176)
6.5.2. Maszyny BRBM (177)
6.5.3. Maszyny RBM w praktyce (180)
6.6. Podsumowanie (183)

Rozdział 7. Dokonywanie właściwego wyboru (185)
7.1. Testy A/B (187)
7.1.1. Teoria (187)
7.1.2. Kod (190)
7.1.3. Adekwatność testów A/B (191)
7.2. Wieloręki bandyta (192)
7.2.1. Strategie stosowane w problemie wielorękiego bandyty (192)
7.3. Strategia bayesowska w praktyce (197)
7.4. Testy A/B a strategia bayesowska (207)
7.5. Rozwinięcia eksperymentu z wielorękim bandytą (208)
7.5.1. Bandyci kontekstowi (209)
7.5.2. Problem bandytów z przeciwnikiem (210)
7.6. Podsumowanie (210)

Rozdział 8. Przyszłość inteligentnej sieci (213)
8.1. Przyszłe zastosowania inteligentnej sieci (214)
8.1.1. Internet rzeczy (214)
8.1.2. Opieka zdrowotna w domu (215)
8.1.3. Autonomiczne samochody (215)
8.1.4. Spersonalizowane fizyczne reklamy (216)
8.1.5. Sieć semantyczna (216)
8.2. Społeczne implikacje rozwoju inteligentnej sieci (217)

Dodatek. Pobieranie danych z sieci WWW (219)
Przykład - wyświetlanie reklam w internecie (220)
Dane dostępne w kontekście reklamy internetowej (220)
Rejestrowanie danych - naiwne rozwiązanie (221)
Zarządzanie zbieraniem danych w dużej skali (222)
Poznaj system Kafka (224)
Replikacja w systemie Kafka (226)
Grupy konsumentów, równoważenie i kolejność (232)
Łączenie wszystkich elementów (233)
Ocena systemu Kafka - rejestrowanie danych w dużej skali (236)
Wzorce projektowe w systemie Kafka (238)
Łączenie systemów Kafka i Storm (238)
Łączenie systemów Kafka i Hadoop (240)

Inteligentna sieć. Algorytmy przyszłości. Wydanie II
Tytuł książki: "Inteligentna sieć. Algorytmy przyszłości. Wydanie II"
Autor: Douglas McIlwraith, Haralambos Marmanis, Dmitry Babenko
Wydawnictwo: HELION
Cena: 54.90zł 38.43zł
Klienci, którzy kupili „Inteligentna sieć. Algorytmy przyszłości. Wydanie II”, kupili także:
<b>UML 2.1 ćwiczenia</b>, <font color="navy">Praca zbiorowa pod redakcją Stanisława Wryczy</font>, <font color="green"> Wydawnictwo HELION</font>
UML 2.1 ćwiczenia, Praca zbiorowa pod redakcją Stanisława Wryczy, Wydawnictwo HELION
<b>Excel 2007/2010 PL Ćwiczenia zaawansowane</b>, <font color="navy">Krzysztof Masłowski</font>, <font color="green"> Wydawnictwo HELION</font>
Excel 2007/2010 PL Ćwiczenia zaawansowane, Krzysztof Masłowski, Wydawnictwo HELION
<b>Logika i argumentacja Praktyczny kurs krytycznego myślenia</b>, <font color="navy">Andrzej Kisielewicz</font>, <font color="green"> Wydawnictwo Naukowe PWN</font>
Logika i argumentacja Praktyczny kurs krytycznego myślenia, Andrzej Kisielewicz, Wydawnictwo Naukowe PWN
<b>Selenium i testowanie aplikacji. Receptury. Wydanie II</b>, <font color="navy">Unmesh Gundecha</font>, <font color="green"> Wydawnictwo HELION</font>
Selenium i testowanie aplikacji. Receptury. Wydanie II, Unmesh Gundecha, Wydawnictwo HELION
<b>Wprowadzenie do algorytmów</b>, <font color="navy">Thomas H. Cormen, Charles E. Leiserson, Ronald Rivest, Clifford Stein</font>, <font color="green"> Wydawnictwo Naukowe PWN</font>
Wprowadzenie do algorytmów, Thomas H. Cormen, Charles E. Leiserson, Ronald Rivest, Clifford Stein, Wydawnictwo Naukowe PWN
<b>Poszukaj w sobie Zaskakujący sposób na sukces i szczęście (oraz pokój na świecie)</b>, <font color="navy">Chade-Meng Tan  ,  Daniel Goleman (przedmowa)</font>, <font color="green"> Wydawnictwo GALAKTYKA</font>
Poszukaj w sobie Zaskakujący sposób na sukces i szczęście (oraz pokój na świecie), Chade-Meng Tan , Daniel Goleman (przedmowa), Wydawnictwo GALAKTYKA
 Koszyk
0 przedmiotów
Producent
Tu można zobaczyć wszystkie książki z wydawnictwa:

Wydawnictwo HELION
 Kategoria:
 Fizyka
Feynmana wykłady z fizyki Feynman radzi Wydanie 2

Feynmana wykłady z fizyki Feynman radzi Wydanie 2

54.00zł
37.80zł
Informacje
Regulamin sklepu.
Koszty wysyłki.
Polityka prywatności.
Jak kupować?
Napisz do Nas.
 Wydawnictwa
 Poradniki
Perełki programowania gier Vademecum profesjonalisty Tom 2 Dante Treglia HELION
Sztuczna inteligencja Marek Jan Kasperski HELION
Modelowanie danych Sharon Allen HELION
SAP R/3 Przewodnik dla menadżerów Vivek Kale HELION
Ubuntu Serwer Oficjalny podręcznik Wydanie II Kyle Rankin, Benjamin Mako Hill HELION
Podstawy fizyki atomu Zofia Leś Naukowe PWN
Zadania z mechaniki ogólnej Część 2 Kinematyka Wydanie VI Jan Misiak Naukowe PWN
Access programowanie w VBA Charles E. Brown HELION
Rootkity Sabotowanie jądra systemu Windows Greg Hoglund, Jamie Butler HELION

niedziela, 19 listopad 2017   Mapa strony |  Nowości |  Dzisiejsze promocje |  Koszty wysyłki |  Kontakt z nami